Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Genes (Basel) ; 12(10)2021 10 04.
Article in English | MEDLINE | ID: covidwho-1512224

ABSTRACT

Regular exercise can upgrade the efficiency of the immune system and beneficially alter the composition of the gastro-intestinal microbiome. We tested the hypothesis that active athletes have a more diverse microbiome than sedentary subjects, which could provide better protection against COVID-19 during infection. Twenty active competing athletes (CA) (16 male and 4 females of the national first and second leagues), aged 24.15 ± 4.7 years, and 20 sedentary subjects (SED) (15 male and 5 females), aged 27.75 ± 7.5 years, who had been diagnosed as positive for COVID-19 by a PCR test, served as subjects for the study. Fecal samples collected five to eight days after diagnosis and three weeks after a negative COVID-19 PCR test were used for microbiome analysis. Except for two individuals, all subjects reported very mild and/or mild symptoms of COVID-19 and stayed at home under quarantine. Significant differences were not found in the bacterial flora of trained and untrained subjects. On the other hand, during COVID-19 infection, at the phylum level, the relative abundance of Bacteroidetes was elevated during COVID-19 compared to the level measured three weeks after a negative PCR test (p < 0.05) when all subjects were included in the statistical analysis. Since it is known that Bacteroidetes can suppress toll-like receptor 4 and ACE2-dependent signaling, thus enhancing resistance against pro-inflammatory cytokines, it is suggested that Bacteroidetes provide protection against severe COVID-19 infection. There is no difference in the microbiome bacterial flora of trained and untrained subjects during and after a mild level of COVID-19 infection.


Subject(s)
Athletes , Bacteroidetes/growth & development , COVID-19/microbiology , Gastrointestinal Microbiome , Sedentary Behavior , Adult , Bacteroidetes/classification , COVID-19/prevention & control , Female , Humans , Male , SARS-CoV-2
2.
Int J Environ Res Public Health ; 18(18)2021 09 12.
Article in English | MEDLINE | ID: covidwho-1409586

ABSTRACT

Our goal was to assess agility, explosive power, and speed-endurance capacity by implementing noninvasive procedures and sport-specific tests. We hypothesized that agility, speed, explosive power, and speed-endurance capacity might be maintained or increased by an individualized home-based training program. Eleven adolescent athletes participated in our study; they executed three tests before the coronavirus outbreak and 13 weeks later, after the pandemic curfew. We used the SpeedCourt System to assess the sport-specific speed and agility parameters and monitor speed-endurance capacity. We conducted the first measurement at the end of the preparatory period, on 28 February 2020. The second session consisted of 4 weeks of regular training and 9 weeks of individual, home-based activities. Compared to the first (pre-pandemic) testing session, our participants demonstrated a significantly improved capacity of the lower limbs' explosive strength after completing the home-based exercise routine, compared to the first (pre-pandemic) testing session. We found that agility, speed, and explosive power might be maintained at the same level under home-based conditions. We found that it was challenging for the participants to increase their "pre-pandemic" endurance capacities.


Subject(s)
Athletic Performance , COVID-19 , Explosive Agents , Soccer , Adolescent , Communicable Disease Control , Humans , Muscle Strength , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL